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RSA Keys

RSA public key:

N = pq

e

RSA private key:

N = pq

d = e≠1
mod (p ≠ 1)(q ≠ 1)
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CRT-RSA Keys
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Partial Key Exposure Attacks

Theorem (Coppersmith EC’96)
Given half of the bits of p, we can factor N in

polynomial time.

Coppersmith’s attack is e�cient:

Bit-size of N Runtime on a laptop

1024 ¥ 2min

2048 ¥ 6min

4096 ¥ 24min

Coppersmith’s attack is practical:
• [BCC+13] breaks ¥ 80 smart cards.

• [NSS+17] breaks ¥ 10
7

smart cards.

Theorem (Boneh, Durfee, Frankel AC’98)
Suppose e = O(log N). Given a quarter of the

bits of d , we can factor N in polynomial time.

Theorem (Blömer, May CRYPTO’03)
Suppose e = O(log N). Given half of the bits of

dp , we can factor N in polynomial time.

• For n-bit N, these attacks require
n
4

bits.

p ¥ N1/2, d ¥ N, dp ¥ N1/2
.
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Partial Key Exposure Attacks

Theorem (Ernst, Jochemsz, May, de Weger EC’05; Aono PKC’09; Takayasu, Kunihiro SAC’14)
Suppose e = O(N). The smaller d , the less bits of d we have to know to factor N in polynomial time

(assuming a well-established heuristic).
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Partial Key Exposure Attacks

Theorem (May, N., Sarkar AC’21)
Suppose e = O(N). The smaller dp , dq , the less bits of dp , dq we have to know to factor N in polynomial time

(assuming a well-established heuristic).
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Partial Key Exposure Attacks

Theorem (May, N., Sarkar AC’21)
Suppose e = O(N). The smaller dp , dq , the less bits of dp , dq we have to know to factor N in polynomial time

(assuming a well-established heuristic).

• e = O(N1/2
)

• e = O(N)
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Partial Key Exposure Attacks

Partial Key Exposure attacks in a nutshell:
• The smaller e, d , dp , dq , the less bits we have

to know to factor N in polynomial time.

Our result:
• New Partial Key Exposure attack for exposed

dp , dq and small(-ish) e < N1/4
.

• Surprsing behaviour for e Æ N1/12
:

The larger e, the less bits we have to know to

factor N in polynomial time.
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Our Partial Key Exposure Attack
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Why Our Attack Behaves Di�erently

The usual strategy for RSA Partial Key Exposure
attacks:

Model problem as system of polynomial equations

------

f1(x1, . . . , xk) = 0

.

.

.

fn(x1, . . . , xk) = 0

------
.

Apply Coppersmith’s method.

Our new strategy:

Model problem as system of polynomial equations

------

f1(x1, . . . , xk) = 0

.

.

.

fn(x1, . . . , xk) = 0

------
.

Compute partial solution in few variables.

Apply Coppersmith’s method.
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Step 1: Compute Partial Solution in Few Variables

There exist k, ¸ œ N, such that

edp = 1 + k(p ≠ 1),

edq = 1 + ¸(q ≠ 1).

Lemma

If dMSB
p , dMSB

q > e2
, then

Ï
e2dMSB

p dMSB

q
N

Î
= k¸.

Lemma
We can split k¸ into k and ¸ in time O(log

2 N).

Question
How di�cult is computing k, ¸?

• Folklore: If e = O(log N), then brute-force

search runs in polynomial time.

• [GHM05]: If e Ø N1/4
, then as hard as

factoring.

Our result:

• Can e�ciently compute k, ¸.
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Step 1: Compute Partial Solution in Few Variables

There exist k, ¸ œ N, such that

edMSB

p ¥ e(dMSB

p ||dLSB

p ) = 1 + k(p ≠ 1) ¥ kp,

edMSB

q ¥ e(dMSB

q ||dLSB

q ) = 1 + ¸(q ≠ 1) ¥ ¸q.

=∆ e2dMSB

p dMSB

q ¥ k¸N.

=∆
e2dMSB

p dMSB
q

N ¥ k¸.
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Step 2: Apply Coppersmith’s Method

Problem (Approximate GCD Problem)
Given:

• N0 = q0s
• N1 ¥ q1s

• q1

Find:

• s

Theorem (Howgrave-Graham CaLC’01)

If s Ø N—
0

, — œ [0, 1] and |N1 ≠ q1s| < N—2

0
, then

we can compute s in polynomial time.

• Algorithm is based on Coppersmith’s method.

Our attack scenario
Given:

• N = qp
• edMSB

p ¥ kp

• k

Find:

• p

Corollary
Given k and dMSB

p with

dMSB

p >
N1/4

e ,

we can factor N in polynomial time.
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Step 2: Apply Coppersmith’s Method

Problem (Approximate GCD Multiple Problem)
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Putting Everything Together
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Theorem
Suppose the dashed line is correct. Then there exists an e�cient algorithm,

that factors N on input of a
1

3
-fraction of the bits of p.

• For n-bit N, such an algorithm requires only
n
6

bits.

• The best known attacks require either at least
n
4

bits or very short secret

exponents. Less than
n
4

bits, if d < N0.44
or dp , dq < N0.19

.
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Conclusion and Open Problems

Conclusion:
• Previously known Partial Key Exposure attacks

work the better, the smaller e, d , dp , dq .

• First Partial Key Exposure attack on RSA,

with a di�erent behavior.

• Works best for e ¥ N1/12
.

• Take-away: Do not apply Coppersmith’s

method directly to your system of polynomial

equations. Check first, if you can eliminate

some variables by di�erent means.

Open Problems:
• Which size of e should we use in practice?

• Is e ¥ N1/12
the least secure?

• Does our algorithm for the

AGCD-Multiple-Problem have implications for

the AGCD-Problem?

Security of "FHE over the integers" and LWE?
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Comparison Between Partial Key Exposure Attacks

Exposed variable Constraint Required bits

p -
n
4

d e = O(log N)
n
4

dp e = O(log N)
n
4

d d < N0.44 < n
4

d d < N0.36 < n
8

d d < N0.29
0

dp , dq dp , dq < N0.29 < 2 ◊
n
4

dp , dq dp , dq < N0.19 < 2 ◊
n
8

dp , dq dp , dq < N0.12
0

dp , dq e Æ N1/8
Æ 2 ◊

n
4

dp , dq e ¥ N1/12
2 ◊

n
6
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