Approximate Divisor Multiples Factoring with Only a Third of the Secret CRT-Exponents EUROCRYPT'22

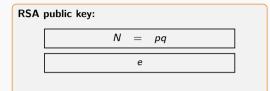
Alexander May ¹ Julian Nowakowski ¹ Santanu Sarkar ²

¹ Ruhr-University Bochum, Germany

² Indian Institute of Technology Madras, India

https://eprint.iacr.org/2022/271

RSA Keys

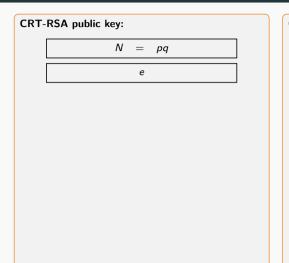


RSA private key:

$$N = pq$$

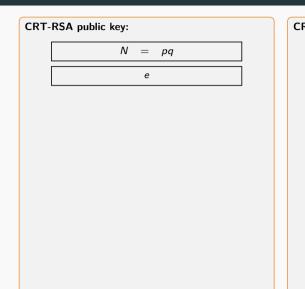
$$d = e^{-1} \mod (p-1)(q-1)$$

CRT-RSA Keys



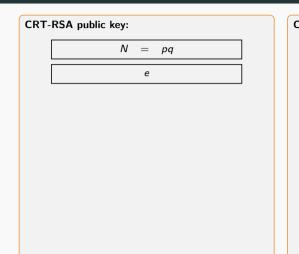
CRT-RSA private key: N = pq $d = e^{-1} \mod (p-1)(q-1)$ р q $d_p = d \mod (p-1)$ $d_q = d \mod (q-1)$ $q_{inv} = q^{-1} \mod p$

CRT-RSA Keys



CRT-RSA private key: N = pq $d = e^{-1} \mod (p-1)(q-1)$ р a $d_p \equiv d \mod (p-1)$ $d_q \equiv d \mod (q-1)$ $q_{inv} = q^{-1} \mod p$

CRT-RSA Keys



CRT-RSA private key: N = pq $d = e^{-1} \mod (p-1)(q-1)$ р a $d_p \equiv d \mod (p-1)$ $d_q = d \mod (q-1)$ $q_{inv} = q^{-1} \mod p$

Partial Key Exposure Attacks

Theorem (Coppersmith EC'96)

Given half of the bits of p, we can factor N in polynomial time.

Coppersmith's attack is efficient:

Bit-size of N	Runtime on a laptop	
1024	pprox 2min	
2048	pprox 6min	
4096	pprox 24min	

Coppersmith's attack is practical:

- [BCC+13] breaks ≈ 80 smart cards.
- [NSS+17] breaks $\approx 10^7$ smart cards.

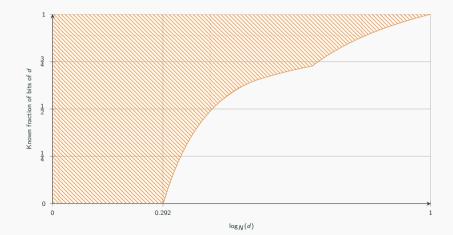
Theorem (Boneh, Durfee, Frankel AC'98) Suppose $e = O(\log N)$. Given a quarter of the bits of *d*, we can factor *N* in polynomial time.

Theorem (Blömer, May CRYPTO'03) Suppose $e = O(\log N)$. Given half of the bits of d_p , we can factor N in polynomial time.

• For n-bit N, these attacks require $\frac{n}{4}$ bits. $\label{eq:stars} \lim _{p} \approx N^{1/2}, \ d \approx N, \ d_p \approx N^{1/2}.$

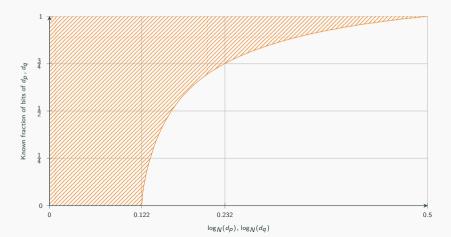
Partial Key Exposure Attacks

Theorem (Ernst, Jochemsz, May, de Weger EC'05; Aono PKC'09; Takayasu, Kunihiro SAC'14) Suppose e = O(N). The smaller *d*, the less bits of *d* we have to know to factor *N* in polynomial time (assuming a well-established heuristic).



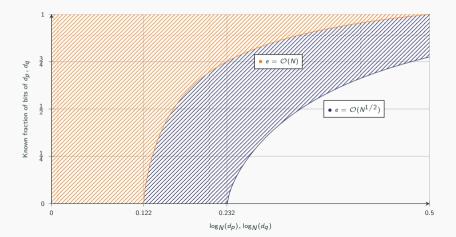
Theorem (May, N., Sarkar AC'21)

Suppose e = O(N). The smaller d_p , d_q , the less bits of d_p , d_q we have to know to factor N in polynomial time (assuming a well-established heuristic).



Theorem (May, N., Sarkar AC'21)

Suppose e = O(N). The smaller d_p , d_q , the less bits of d_p , d_q we have to know to factor N in polynomial time (assuming a well-established heuristic).



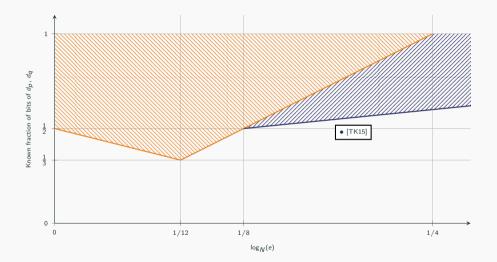
Partial Key Exposure attacks in a nutshell:

• The smaller e, d, d_p , d_q , the less bits we have to know to factor N in polynomial time.

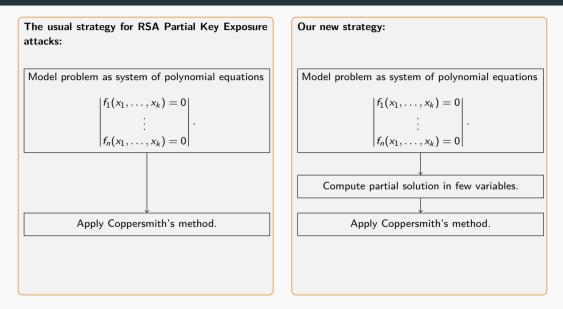
Our result:

- New Partial Key Exposure attack for exposed *d_p*, *d_q* and small(-ish) *e* < N^{1/4}.
- Surprising behaviour for $e \leq N^{1/12}$:

The larger e, the less bits we have to know to factor N in polynomial time.



Why Our Attack Behaves Differently



There exist $k, \ell \in \mathbb{N}$, such that $ed_p = 1 + k(p-1),$ $ed_q = 1 + \ell(q-1).$

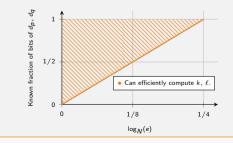
There exist $k, \ell \in \mathbb{N}$, such that

 $ed_p=1+k(p-1),$ $ed_q=1+\ell(q-1).$ Question

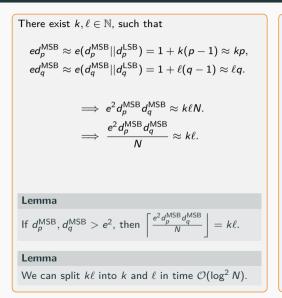
How difficult is computing k, ℓ ?

- Folklore: If e = O(log N), then brute-force search runs in polynomial time.
- [GHM05]: If $e \ge N^{1/4}$, then as hard as factoring.

Our result:



Step 1: Compute Partial Solution in Few Variables

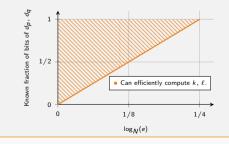


Question

How difficult is computing k, ℓ ?

- Folklore: If $e = O(\log N)$, then brute-force search runs in polynomial time.
- [GHM05]: If $e \ge N^{1/4}$, then as hard as factoring.

Our result:



Problem (Approximate GCD Problem)

Given:

- $N_0 = q_0 s$
- $N_1 pprox q_1 s$

Find:

• 5

Theorem (Howgrave-Graham CaLC'01)

If $s \ge N_0^\beta$, $\beta \in [0,1]$ and $|N_1 - q_1 s| < N_0^{\beta^2}$, then we can compute s in polynomial time.

• Algorithm is based on Coppersmith's method.

Problem (Approximate GCD Problem)

Given:

• $N_0 = q_0 s$

• $N_1 pprox q_1$ s

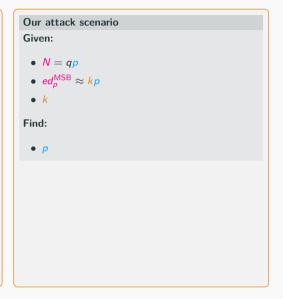
Find:

• 5

Theorem (Howgrave-Graham CaLC'01)

If $s \ge N_0^\beta$, $\beta \in [0,1]$ and $|N_1 - q_1 s| < N_0^{\beta^2}$, then we can compute s in polynomial time.

• Algorithm is based on Coppersmith's method.



Problem (Approximate GCD Multiple Problem) Given:

- $N_0 = q_0 s$
- $N_1 \approx q_1 s$
- **q**1

Find:

• 5

Theorem (Howgrave-Graham CaLC'01)

If $s \ge N_0^\beta$, $\beta \in [0,1]$ and $|N_1 - q_1 s| < N_0^{\beta^2}$, then we can compute s in polynomial time.

Theorem

If
$$s \ge N_0^\beta$$
, $\beta \in [0, 1]$ and $|N_1 - q_1 s| < q_1 N_0^{\beta^2}$ then we can compute s in polynomial time.

Our attack scenario
Given:
$\Lambda N = a p$
• $N = qp$
• $ed_p^{\text{MSB}} \approx kp$
• k
Find:
• <i>p</i>

Problem (Approximate GCD Multiple Problem) Given:

- $N_0 = q_0 s$
- $N_1 \approx q_1 s$
- **q**1

Find:

• 5

Theorem (Howgrave-Graham CaLC'01)

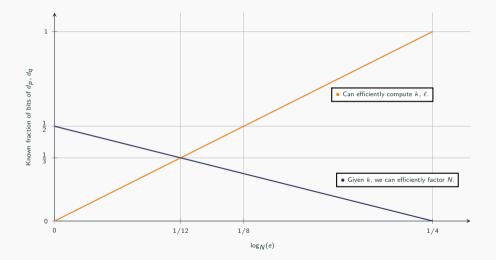
If $s \ge N_0^\beta$, $\beta \in [0,1]$ and $|N_1 - q_1 s| < {N_0^\beta}^2$, then we can compute s in polynomial time.

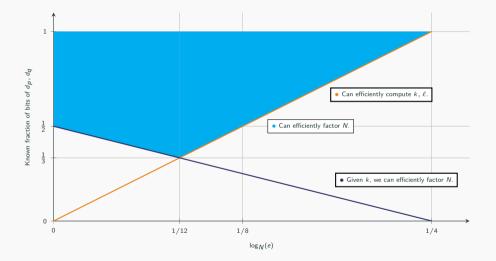
Theorem

If
$$s \geq N_0^{\beta}$$
, $\beta \in [0, 1]$ and $|N_1 - q_1 s| < q_1 N_0^{\beta^2}$,
then we can compute s in polynomial time.

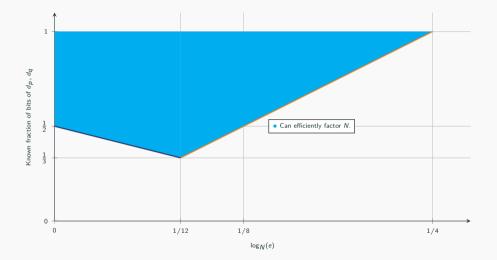
Ou	ır attack scenario
Giv	/en:
•	N = qp
•	$ed_p^{\text{MSB}} \approx kp$
•	k
Fin	nd:
•	p
Co	rollary
Giv	ven k and d_p^{MSB} with
	$d_ ho^{ ext{MSB}} > rac{N^{1/4}}{e},$
we	can factor N in polynomial time.

Putting Everything Together

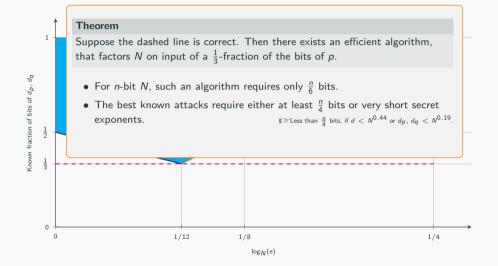




Putting Everything Together



Putting Everything Together



Conclusion:

- Previously known Partial Key Exposure attacks work the better, the smaller *e*, *d*, *d*_p, *d*_q.
- First Partial Key Exposure attack on RSA, with a different behavior.
- Works best for $e \approx N^{1/12}$.
- Take-away: Do not apply Coppersmith's method directly to your system of polynomial equations. Check first, if you can eliminate some variables by different means.

Open Problems:

- Which size of e should we use in practice?
- Is $e \approx N^{1/12}$ the least secure?
- Does our algorithm for the AGCD-Multiple-Problem have implications for the AGCD-Problem?

Security of "FHE over the integers" and LWE?

Comparison Between Partial Key Exposure Attacks

_

Exposed variable	Constraint	Required bits
p	-	$\frac{n}{4}$
d d _p	$e = \mathcal{O}(\log N)$ $e = \mathcal{O}(\log N)$	<u>n</u> 4 4
d d d	$d < N^{0.44} \ d < N^{0.36} \ d < N^{0.29}$	$< \frac{n}{4}$ $< \frac{n}{8}$ 0
$egin{aligned} & d_p, d_q \ & d_p, d_q \ & d_p, d_q \end{aligned}$	$egin{aligned} & d_p, d_q < N^{0.29} \ & d_p, d_q < N^{0.19} \ & d_p, d_q < N^{0.12} \end{aligned}$	$<2 imesrac{n}{4} < 2 imesrac{n}{8} \ 0$
$egin{array}{l} d_{ ho}, d_{q} \ d_{ ho}, d_{q} \end{array}$	$e \leq {\cal N}^{1/8} \ e pprox {\cal N}^{1/12}$	$\frac{\leq 2 \times \frac{n}{4}}{2 \times \frac{n}{6}}$