Approximate Divisor Multiples
 Factoring with Only a Third of the Secret CRT-Exponents

EUROCRYPT'22

Alexander May ${ }^{1}$ Julian Nowakowski ${ }^{1}$ Santanu Sarkar ${ }^{2}$
${ }^{1}$ Ruhr-University Bochum, Germany
2 Indian Institute of Technology Madras, India

https://eprint.iacr.org/2022/271

RSA public key:

RSA private key:

$$
\begin{array}{|c|}
\hline N=p q \\
d=e^{-1} \bmod (p-1)(q-1) \\
\hline
\end{array}
$$

CRT-RSA Keys

CRT-RSA public key:

CRT-RSA private key:

CRT-RSA Keys

CRT-RSA public key:

CRT-RSA private key:

CRT-RSA Keys

CRT-RSA public key:

CRT-RSA private key:

$$
d_{a} \equiv d \bmod (q-1)
$$

$q_{\text {inv }}=q^{-1} \bmod p$

Partial Key Exposure Attacks

Theorem (Coppersmith EC'96)

Given half of the bits of p, we can factor N in polynomial time.

Coppersmith's attack is efficient:

Bit-size of N	Runtime on a laptop
1024	$\approx 2 \min$
2048	$\approx 6 \min$
4096	$\approx 24 \mathrm{~min}$

Coppersmith's attack is practical:

- [BCC+13] breaks ≈ 80 smart cards.
- [NSS+17] breaks $\approx 10^{7}$ smart cards.

Theorem (Boneh, Durfee, Frankel AC'98)

Suppose $e=\mathcal{O}(\log N)$. Given a quarter of the
bits of d, we can factor N in polynomial time.

Theorem (Blömer, May CRYPTO'03)

Suppose $e=\mathcal{O}(\log N)$. Given half of the bits of d_{p}, we can factor N in polynomial time.

- For n-bit N, these attacks require $\frac{n}{4}$ bits.

$$
p \approx N^{1 / 2}, d \approx N, d_{p} \approx N^{1 / 2}
$$

Partial Key Exposure Attacks

Theorem (Ernst, Jochemsz, May, de Weger EC'05; Aono PKC'09; Takayasu, Kunihiro SAC'14) Suppose $e=\mathcal{O}(N)$. The smaller d, the less bits of d we have to know to factor N in polynomial time (assuming a well-established heuristic).

Partial Key Exposure Attacks

Theorem (May, N., Sarkar AC'21)

Suppose $e=\mathcal{O}(N)$. The smaller d_{p}, d_{q}, the less bits of d_{p}, d_{q} we have to know to factor N in polynomial time (assuming a well-established heuristic).

Partial Key Exposure Attacks

Theorem (May, N., Sarkar AC'21)

Suppose $e=\mathcal{O}(N)$. The smaller d_{p}, d_{q}, the less bits of d_{p}, d_{q} we have to know to factor N in polynomial time (assuming a well-established heuristic).

Partial Key Exposure Attacks

Partial Key Exposure attacks in a nutshell:

- The smaller e, d, d_{p}, d_{q}, the less bits we have to know to factor N in polynomial time.

Our result:

- New Partial Key Exposure attack for exposed d_{p}, d_{q} and small(-ish) e $<N^{1 / 4}$.
- Surprsing behaviour for $e \leq N^{1 / 12}$:

The larger e, the less bits we have to know to factor N in polynomial time.

Our Partial Key Exposure Attack

Why Our Attack Behaves Differently

The usual strategy for RSA Partial Key Exposure attacks:

Model problem as system of polynomial equations

$$
\left|\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{k}\right)=0 \\
\vdots \\
f_{n}\left(x_{1}, \ldots, x_{k}\right)=0
\end{array}\right| .
$$

Apply Coppersmith's method.

Our new strategy:

Model problem as system of polynomial equations

$$
\left|\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{k}\right)=0 \\
\vdots \\
f_{n}\left(x_{1}, \ldots, x_{k}\right)=0
\end{array}\right| .
$$

Compute partial solution in few variables.

Apply Coppersmith's method.

There exist $k, \ell \in \mathbb{N}$, such that

$$
\begin{aligned}
& e d_{p}=1+k(p-1), \\
& e d_{q}=1+\ell(q-1) .
\end{aligned}
$$

Step 1: Compute Partial Solution in Few Variables

There exist $k, \ell \in \mathbb{N}$, such that

$$
\begin{aligned}
& e d_{p}=1+k(p-1) \\
& e d_{q}=1+\ell(q-1)
\end{aligned}
$$

Question

How difficult is computing k, ℓ ?

- Folklore: If $e=\mathcal{O}(\log N)$, then brute-force search runs in polynomial time.
- [GHM05]: If $e \geq N^{1 / 4}$, then as hard as factoring.

Our result:

Step 1: Compute Partial Solution in Few Variables

There exist $k, \ell \in \mathbb{N}$, such that

$$
\begin{aligned}
& e d_{p}^{\mathrm{MSB}} \approx e\left(d_{p}^{\mathrm{MSB}} \| d_{p}^{\mathrm{LSB}}\right)=1+k(p-1) \approx k p, \\
& e d_{q}^{\mathrm{MSB}} \approx e\left(d_{q}^{\mathrm{MSB}} \| d_{q}^{\mathrm{LSB}}\right)=1+\ell(q-1) \approx \ell q .
\end{aligned}
$$

$$
\begin{aligned}
& \Longrightarrow e^{2} d_{p}^{\mathrm{MSB}} d_{q}^{\mathrm{MSB}} \approx k \ell N . \\
& \Longrightarrow \frac{e^{2} d_{p}^{\mathrm{MSB}} d_{q}^{\mathrm{MSB}}}{N} \approx k \ell .
\end{aligned}
$$

Lemma

If $d_{p}^{\mathrm{MSB}}, d_{q}^{\mathrm{MSB}}>e^{2}$, then $\left\lceil\frac{e^{2} d_{p}^{\mathrm{MSB}} d_{q}^{\mathrm{MSB}}}{N}\right\rfloor=k \ell$.

Lemma

We can split $k \ell$ into k and ℓ in time $\mathcal{O}\left(\log ^{2} N\right)$.

Question

How difficult is computing k, ℓ ?

- Folklore: If $e=\mathcal{O}(\log N)$, then brute-force search runs in polynomial time.
- [GHM05]: If $e \geq N^{1 / 4}$, then as hard as factoring.

Our result:

Step 2: Apply Coppersmith's Method

Problem (Approximate GCD Problem)

Given:

- $N_{0}=q_{0} s$
- $N_{1} \approx q_{1} s$

Find:
-s

Theorem (Howgrave-Graham CaLC'01)
If $s \geq N_{0}^{\beta}, \beta \in[0,1]$ and $\left|N_{1}-q_{1} s\right|<N_{0}^{\beta^{2}}$, then we can compute s in polynomial time.

- Algorithm is based on Coppersmith's method.

Step 2: Apply Coppersmith's Method

Problem (Approximate GCD Problem)

Given:

- $N_{0}=q_{0} s$
- $N_{1} \approx q_{1}$ s

Find:

- s

Theorem (Howgrave-Graham CaLC'01)
If $s \geq N_{0}^{\beta}, \beta \in[0,1]$ and $\left|N_{1}-q_{1} s\right|<N_{0}^{\beta^{2}}$, then we can compute s in polynomial time.

- Algorithm is based on Coppersmith's method.

Our attack scenario
Given:

- $N=q p$
- $e d_{p}^{\mathrm{MSB}} \approx k p$
- k

Find:

- p

Step 2: Apply Coppersmith's Method

Problem (Approximate GCD Multiple Problem)

Given:

- $N_{0}=q_{0} s$
- $N_{1} \approx q_{1} s$
- q_{1}

Find:

- s

Theorem (Howgrave-Graham CaLC'01)

If $s \geq N_{0}^{\beta}, \beta \in[0,1]$ and $\left|N_{1}-q_{1} s\right|<N_{0}^{\beta^{2}}$, then we can compute s in polynomial time.

Theorem

If $s \geq N_{0}^{\beta}, \beta \in[0,1]$ and $\left|N_{1}-q_{1} s\right|<q_{1} N_{0}^{\beta^{2}}$, then we can compute s in polynomial time.

Our attack scenario

Given:

- $N=q p$
- $e d_{p}^{\mathrm{MSB}} \approx k p$
- k

Find:

- p

Step 2: Apply Coppersmith's Method

Problem (Approximate GCD Multiple Problem)

Given:

- $N_{0}=q_{0} s$
- $N_{1} \approx q_{1} s$
- q_{1}

Find:

- s

Theorem (Howgrave-Graham CaLC'01)

If $s \geq N_{0}^{\beta}, \beta \in[0,1]$ and $\left|N_{1}-q_{1} s\right|<N_{0}^{\beta^{2}}$, then we can compute s in polynomial time.

Theorem

If $s \geq N_{0}^{\beta}, \beta \in[0,1]$ and $\left|N_{1}-q_{1} s\right|<q_{1} N_{0}^{\beta^{2}}$, then we can compute s in polynomial time.

Our attack scenario

Given:

- $N=q p$
- $e d_{p}^{\mathrm{MSB}} \approx k p$
- k

Find:

- p

Corollary

Given k and d_{p}^{MSB} with

$$
d_{p}^{\mathrm{MSB}}>\frac{N^{1 / 4}}{e}
$$

we can factor N in polynomial time.

Putting Everything Together

Putting Everything Together

Putting Everything Together

Conclusion and Open Problems

Conclusion:

- Previously known Partial Key Exposure attacks work the better, the smaller e, d, d_{p}, d_{q}.
- First Partial Key Exposure attack on RSA, with a different behavior.
- Works best for $e \approx N^{1 / 12}$.
- Take-away: Do not apply Coppersmith's method directly to your system of polynomial equations. Check first, if you can eliminate some variables by different means.

Open Problems:

- Which size of e should we use in practice?
- Is $e \approx N^{1 / 12}$ the least secure?
- Does our algorithm for the

AGCD-Multiple-Problem have implications for the AGCD-Problem?

Comparison Between Partial Key Exposure Attacks

Exposed variable	Constraint	Required bits
p	-	$\frac{n}{4}$
d	$e=\mathcal{O}(\log N)$	$\frac{n}{4}$
d_{p}	$e=\mathcal{O}(\log N)$	$\frac{n}{4}$
d	$d<N^{0.44}$	$<\frac{n}{4}$
d	$d<N^{0.36}$	$<\frac{n}{8}$
d	$d<N^{0.29}$	0
d_{p}, d_{q}	$d_{p}, d_{q}<N^{0.29}$	$<2 \times \frac{n}{4}$
d_{p}, d_{q}	$d_{p}, d_{q}<N^{0.19}$	$<2 \times \frac{n}{8}$
d_{p}, d_{q}	$d_{p}, d_{q}<N^{0.12}$	0
d_{p}, d_{q}	$e \leq N^{1 / 8}$	$\leq 2 \times \frac{n}{4}$
d_{p}, d_{q}	$e \approx N^{1 / 12}$	$2 \times \frac{n}{6}$

