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Code Equivalence
Linear [n,k] code: subspace  of dimension .


☞ , . 

Monomial: linear map  that preserves Hamming weight.

☞ ,    for every .

C ⊆ 𝔽n
q k
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§

Codes  are linearly equivalent.




, for some monomial .

C1, C2
⟺

C2 = C1 ⋅ Q Q
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Success Probability in Practice
8

50 60 70 80 90 100

2 0 % 0 % 0 % 0 % 0 % 0 %

3 0 % 0 % 0 % 0 % 0 % 0 %

4 52 % 32 % 30 % 20 % 10 % 0 %

≥ 5 100 % 100 % 100 % 100 % 100 % 100 %

q n
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