An Improved Algorithm for Code Equivalence

Julian Nowakowski

Ruhr University Bochum, Germany

Linear [n,k] code:

Monomial:

Linear [n,k] code: subspace $C \subseteq \mathbb{F}_q^n$ of dimension k.

Monomial:

$\mathbb{S} C = \{ \mathbf{x} \cdot \mathbf{G} \mid \mathbf{x} \in \mathbb{F}_q^k \}, \mathbf{G} \in \mathbb{F}_q^{k \times n}.$

Linear [n,k] code: subspace $C \subseteq \mathbb{F}_q^n$ of dimension k.

Monomial: linear map $\mathbf{Q}: \mathbb{F}_q^n \to \mathbb{F}_q^n$ that preserves Hamming weight.

$$C = \{ \mathbf{x} \cdot \mathbf{G} \mid \mathbf{x} \in \mathbb{F}_q^k \}, \mathbf{G} \in \mathbb{F}_q^{k \times n}.$$

 $\mathbb{Q} \in \mathbb{F}_q^{n \times n}, \quad \operatorname{wt}(\mathbf{v} \cdot \mathbf{Q}) = \operatorname{wt}(\mathbf{v}) \text{ for every } \mathbf{v} \in \mathbb{F}_q^n.$

Linear [n,k] code: subspace $C \subseteq \mathbb{F}_q^n$ of dimension k.

Monomial: linear map $\mathbf{Q}: \mathbb{F}_q^n \to \mathbb{F}_q^n$ that preserves Hamming weight.

Examples:

- permutations P
- diagonal matrices D with non-zero diagonal

$$\mathbf{P} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{D} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

$$C = \{ \mathbf{x} \cdot \mathbf{G} \mid \mathbf{x} \in \mathbb{F}_q^k \}, \mathbf{G} \in \mathbb{F}_q^{k \times n}$$

 $\mathbb{P} \mathbf{Q} \in \mathbb{F}_q^{n \times n}, \ \mathrm{wt}(\mathbf{v} \cdot \mathbf{Q}) = \mathrm{wt}(\mathbf{v}) \text{ for every } \mathbf{v} \in \mathbb{F}_q^n.$

Linear [n,k] code: subspace $C \subseteq \mathbb{F}_q^n$ of dimension k.

Monomial: linear map $\mathbf{Q}: \mathbb{F}_q^n \to \mathbb{F}_q^n$ that preserves Hamming weight. $\mathbb{Q} \in \mathbb{F}_q^{n \times n}$, $\operatorname{wt}(\mathbf{v} \cdot \mathbf{Q}) = \operatorname{wt}(\mathbf{v})$ for every $\mathbf{v} \in \mathbb{F}_q^n$.

E>

xamples:
 Fact:

 permutations P
 Every monomial is of the form
$$Q = P \cdot I$$

 diagonal matrices D with non-zero diagonal
 $P = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
 $D = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$
 $Q = \begin{bmatrix} 0 & 0 & 3 & 0 \\ 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$

$$C = \{ \mathbf{x} \cdot \mathbf{G} \mid \mathbf{x} \in \mathbb{F}_q^k \}, \mathbf{G} \in \mathbb{F}_q^{k \times n}$$

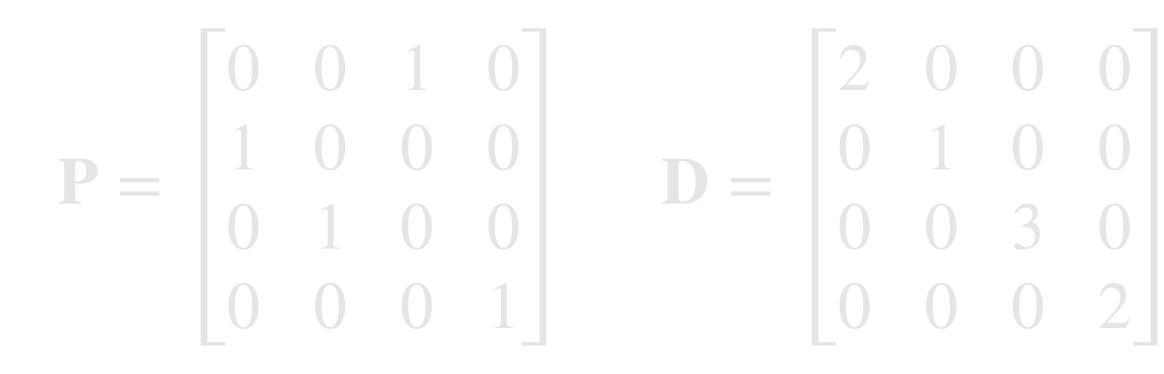
Linear [n,k] code: subspace $C \subseteq \mathbb{F}_q^n$ of dimension k.

Monomial: linear map $\mathbf{Q}: \mathbb{F}_{a}^{n} \to \mathbb{F}_{a}^{n}$ that preserves Hamming weight.

Examples:

permutations P

diagonal matrices D with non-zero diagonal



Codes C_1, C_2 are linearly equivalent. $\mathbf{v} \in \mathbb{F}_q^n$ \longleftrightarrow $C_2 = C_1 \cdot \mathbf{Q}$, for some monomial \mathbf{Q} . Is of the form $\mathbf{Q} = \mathbf{P} \cdot \mathbf{D}$.

$\mathbf{O} = \begin{bmatrix} 0 & 0 & 3 & 0 \\ 2 & 0 & 0 & 0 \end{bmatrix}$ 0 1 0 0 0 0 0 2



Code Equivalence Problem Given: generator matrices $\mathbf{G}_1, \mathbf{G}_2 \in \mathbb{F}_q^{k \times n}$ of equivalent codes C_1, C_2 . **Find:** monomial **Q** with $C_2 = C_1 \cdot \mathbf{Q}$.

Given: generator matrices $\mathbf{G}_1, \mathbf{G}_2 \in \mathbb{F}_q^{k \times n}$ of equivalent codes C_1, C_2 . **Find:** monomial **Q** with $C_2 = C_1 \cdot \mathbf{Q}$.

 \triangle not $\mathbf{G}_2 = \mathbf{G}_1 \cdot \mathbf{Q}$

Given: generator matrices $\mathbf{G}_1, \mathbf{G}_2 \in \mathbb{F}_q^{k \times n}$ of equivalent codes C_1, C_2 . **Find:** monomial **Q** with $C_2 = C_1 \cdot \mathbf{Q}$.

 \triangle not $\mathbf{G}_2 = \mathbf{G}_1 \cdot \mathbf{Q}$, but $\mathbf{G}_2 = \mathbf{U} \cdot \mathbf{G}_1 \cdot \mathbf{Q}$, for some $\mathbf{U} \in \mathrm{GL}(\mathbb{F}_a^k)$.

Given: generator matrices $\mathbf{G}_1, \mathbf{G}_2 \in \mathbb{F}_q^{k \times n}$ of equivalent codes C_1, C_2 . Find: monomial \mathbf{Q} with $C_2 = C_1 \cdot \mathbf{Q}$.

 \triangle not $\mathbf{G}_2 = \mathbf{G}_1 \cdot \mathbf{Q}$, but $\mathbf{G}_2 = \mathbf{U} \cdot \mathbf{G}_1 \cdot \mathbf{Q}$, for some $\mathbf{U} \in \mathrm{GL}(\mathbb{F}_a^k)$.

LESS parameters: ▶ $n \in \{252, 400, 548\}, k = n/2, q = 127$

Given: generator matrices $\mathbf{G}_1, \mathbf{G}_2 \in \mathbb{F}_q^{k \times n}$ of equivalent codes C_1, C_2 . Find: monomial \mathbf{Q} with $C_2 = C_1 \cdot \mathbf{Q}$.

 \triangle not $\mathbf{G}_2 = \mathbf{G}_1 \cdot \mathbf{Q}$, but $\mathbf{G}_2 = \mathbf{U} \cdot \mathbf{G}_1 \cdot \mathbf{Q}$, for some $\mathbf{U} \in \mathrm{GL}(\mathbb{F}_a^k)$.

LESS parameters: ► $n \in \{252, 400, 548\}, k = n/2, q = 127$

Asymptotic analysis: • k/n and q fixed, $n \to \infty$

Given: generator matrices $\mathbf{G}_1, \mathbf{G}_2 \in \mathbb{F}_q^{k \times n}$ of equivalent codes C_1, C_2 . Find: monomial \mathbf{Q} with $C_2 = C_1 \cdot \mathbf{Q}$.

 \triangle not $\mathbf{G}_2 = \mathbf{G}_1 \cdot \mathbf{Q}$, but $\mathbf{G}_2 = \mathbf{U} \cdot \mathbf{G}_1 \cdot \mathbf{Q}$, for some $\mathbf{U} \in \mathrm{GL}(\mathbb{F}_a^k)$.

LESS parameters: ▶ $n \in \{252, 400, 548\}, k = n/2, q = 127$

Asymptotic analysis: • k/n and q fixed, $n \to \infty$ rightarrow This talk: k/n = 1/2.

Given: generator matrices $\mathbf{G}_1, \mathbf{G}_2 \in \mathbb{F}_q^{k \times n}$ of equivalent codes C_1, C_2 . Find: monomial \mathbf{Q} with $C_2 = C_1 \cdot \mathbf{Q}$.

 \triangle not $\mathbf{G}_2 = \mathbf{G}_1 \cdot \mathbf{Q}$, but $\mathbf{G}_2 = \mathbf{U} \cdot \mathbf{G}_1 \cdot \mathbf{Q}$, for some $\mathbf{U} \in \mathrm{GL}(\mathbb{F}_a^k)$.

LESS parameters: ► $n \in \{252, 400, 548\}, k = n/2, q = 127$

Main result:

 $\gamma n/2$

New algorithm for code equivalence with runtime that works for all $q \geq 7$.

Asymptotic analysis: • k/n and q fixed, $n \to \infty$ $rac{1}{2}$ This talk: k/n = 1/2.

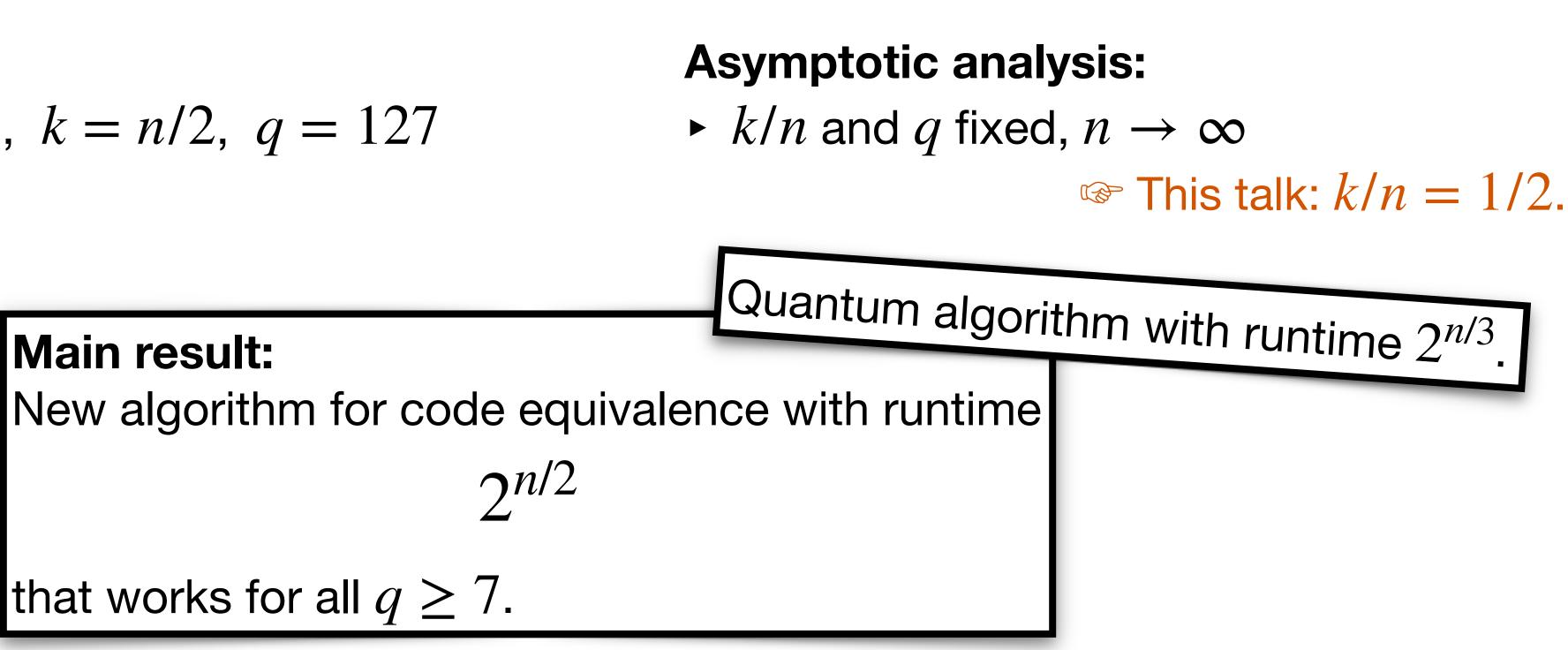
Given: generator matrices $\mathbf{G}_1, \mathbf{G}_2 \in \mathbb{F}_a^{k \times n}$ of equivalent codes C_1, C_2 . Find: monomial \mathbf{Q} with $C_2 = C_1 \cdot \mathbf{Q}$.

 \triangle not $\mathbf{G}_2 = \mathbf{G}_1 \cdot \mathbf{Q}$, but $\mathbf{G}_2 = \mathbf{U} \cdot \mathbf{G}_1 \cdot \mathbf{Q}$, for some $\mathbf{U} \in \mathrm{GL}(\mathbb{F}_a^k)$.

LESS parameters: ► $n \in \{252, 400, 548\}, k = n/2, q = 127$

Main result:

that works for all $q \geq 7$.



Short codeword based:

- ► Leon, 1982
- ► Beullens, 2020
- Barenghi, Biasse, Persichetti, Santini, 2023

Canonical form based:

Chou, Persichetti, Santini, 2025

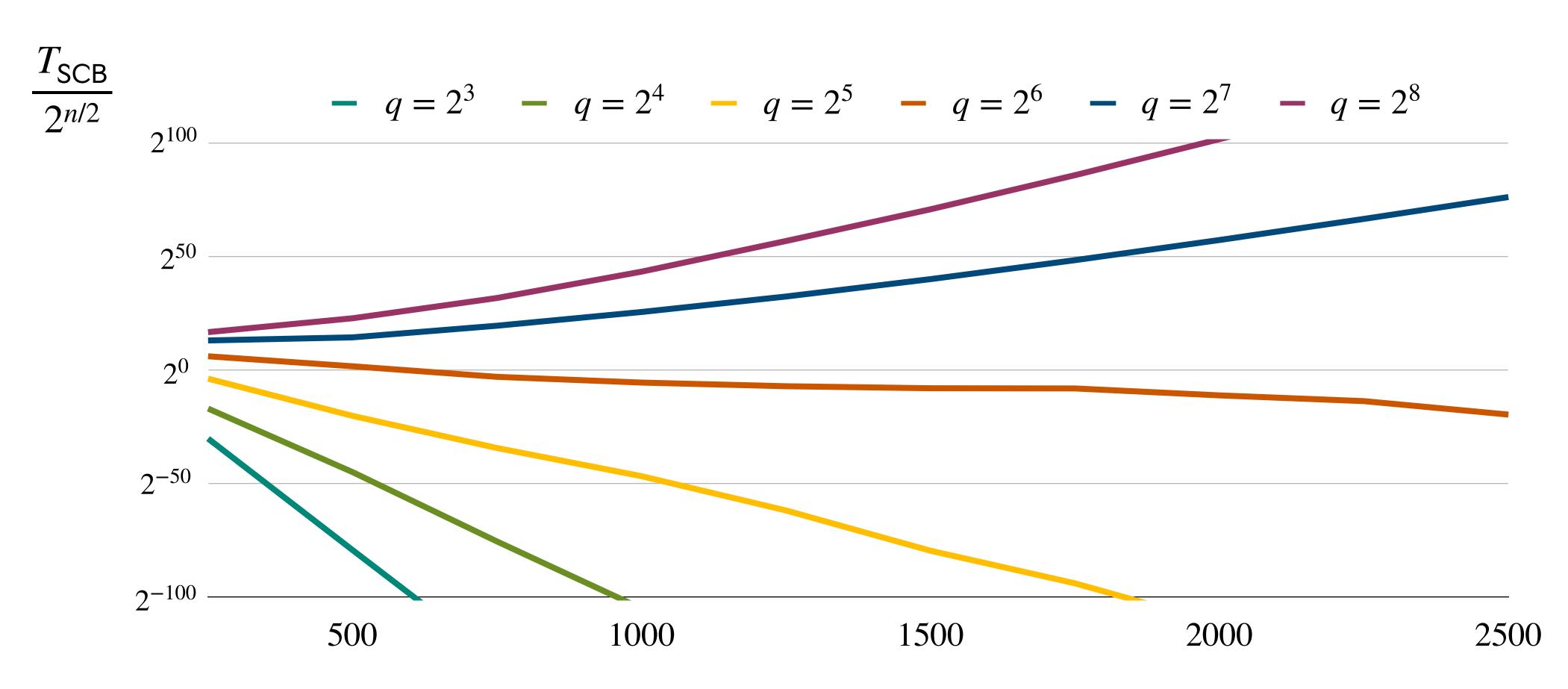
Short codeword based:

- ► Leon, 1982
- ► Beullens, 2020
- Barenghi, Biasse, Persichetti, Santini, 2023

Canonical form based: Chou, Persichetti, Santini, 2025

Short codeword based:

- ► Leon, 1982
- Beullens, 2020
- Barenghi, Biasse, Persichetti, Santini, 2023

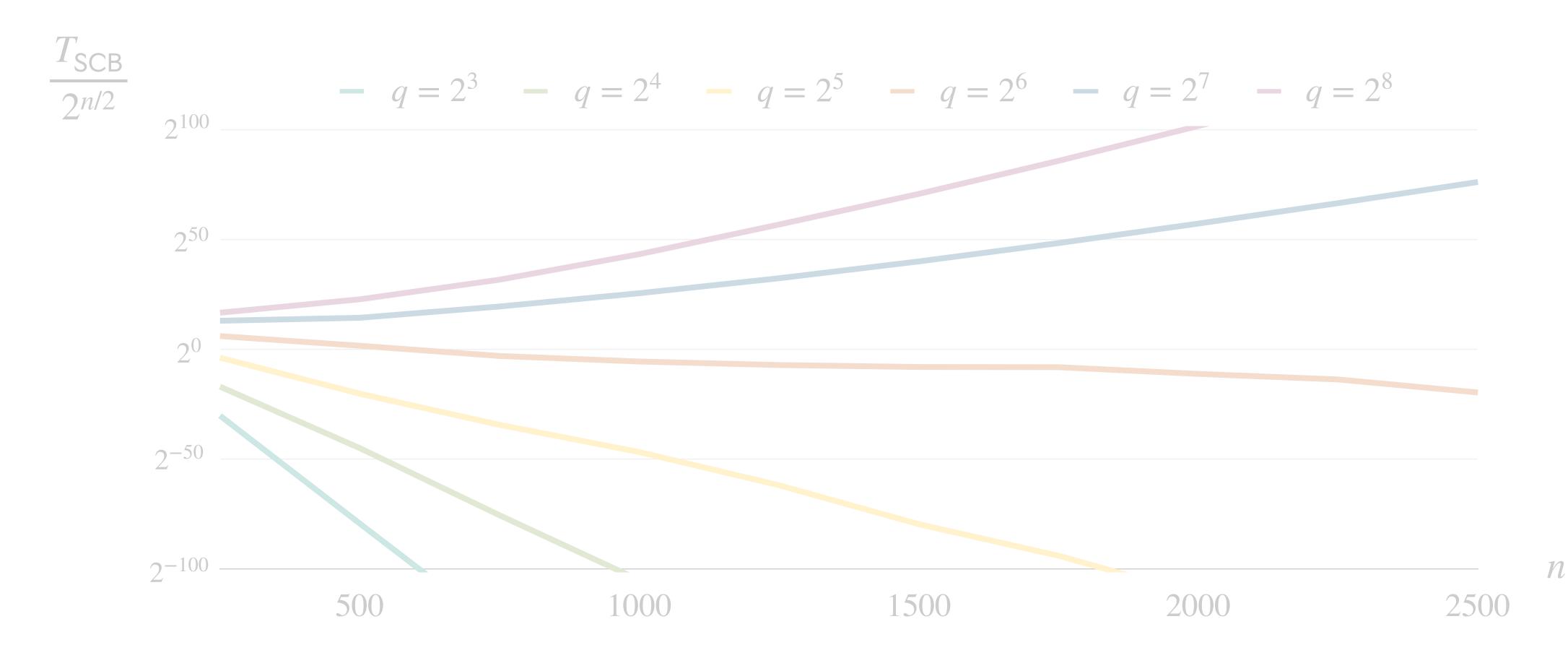


Canonical form based: Chou, Persichetti, Santini, 2025

N

Short codeword based:

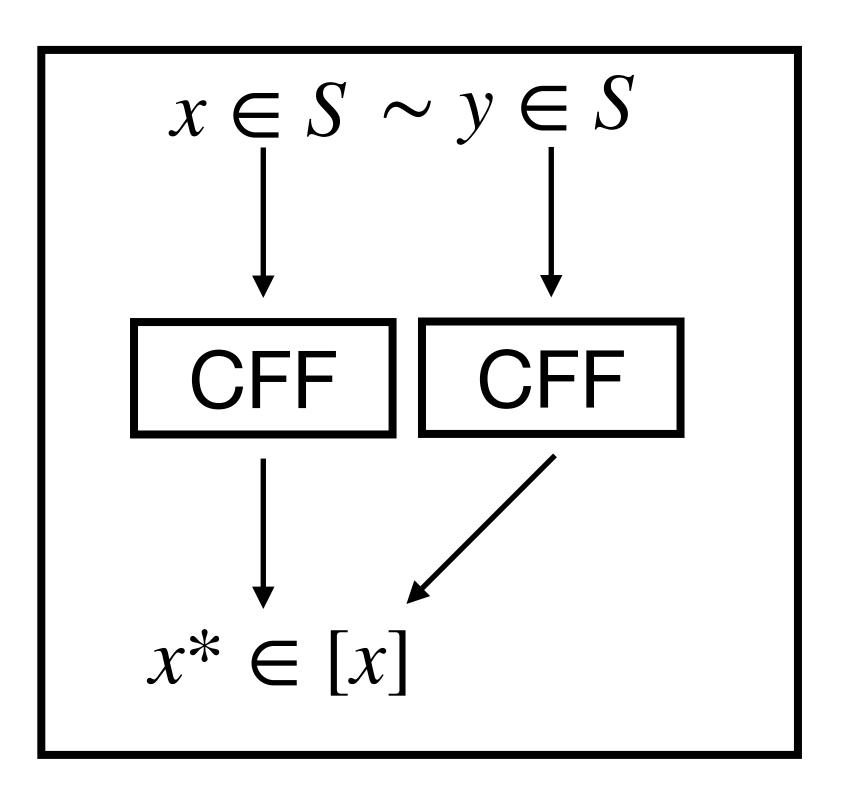
- ► Leon, 1982
- ► Beullens, 2020
- Barenghi, Biasse, Persichetti, Santini, 2023



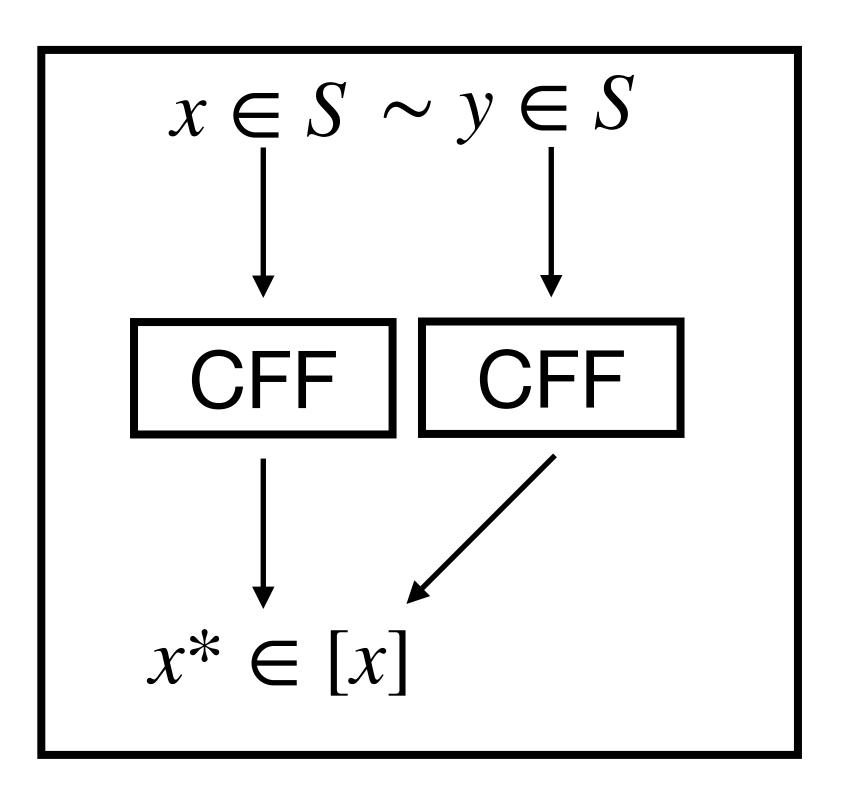
Canonical form based: Chou, Persichetti, Santini, 2025

- ► *S*: set
- ~: equivalence relation on S
- $\bullet [x] := \{ y \mid x \sim y \}$

- ► *S*: set
- ~: equivalence relation on S
- $\bullet [x] := \{ y \mid x \sim y \}$



- ► *S*: set
- ~: equivalence relation on S
- $\bullet [x] := \{ y \mid x \sim y \}$

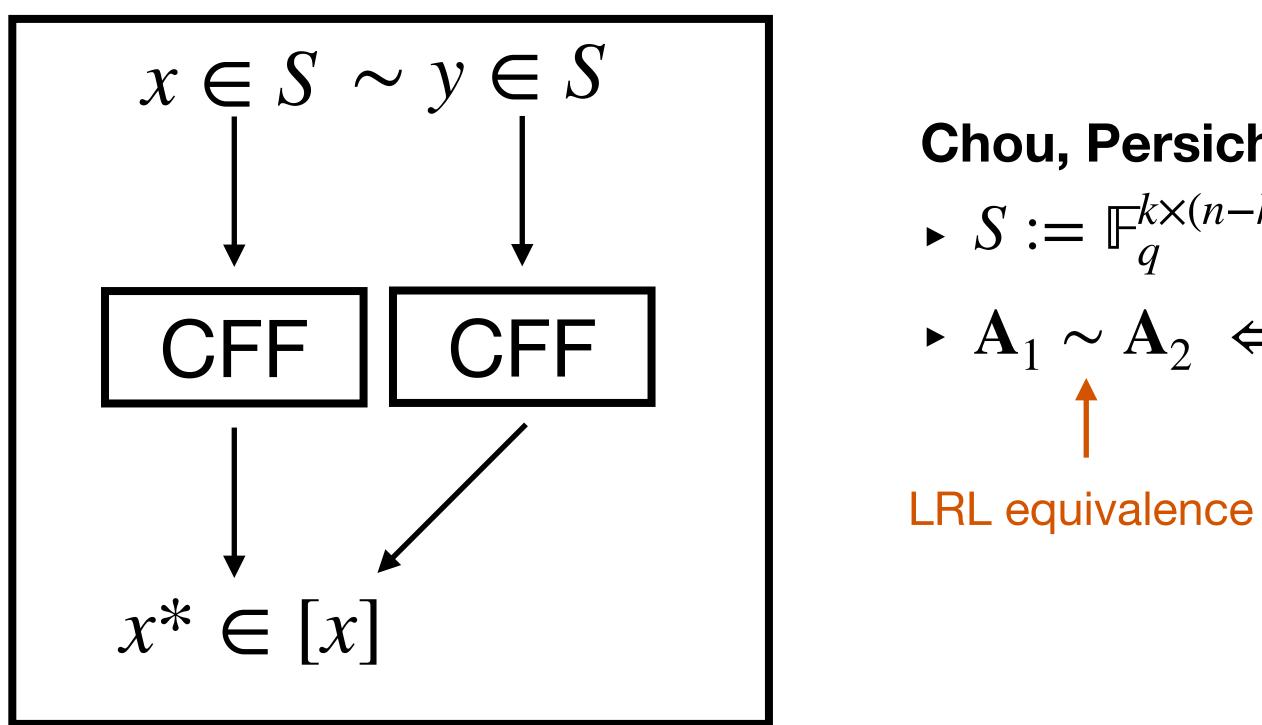


Example:

•
$$S = \mathbb{Z}$$

• $x \sim y \iff x \equiv y \mod 3$
• CFF : $\mathbb{Z} \rightarrow \{0,1,2\}, \quad x \mapsto x \mod 3$

- ► *S*: set
- ~: equivalence relation on S
- $\bullet [x] := \{ y \mid x \sim y \}$

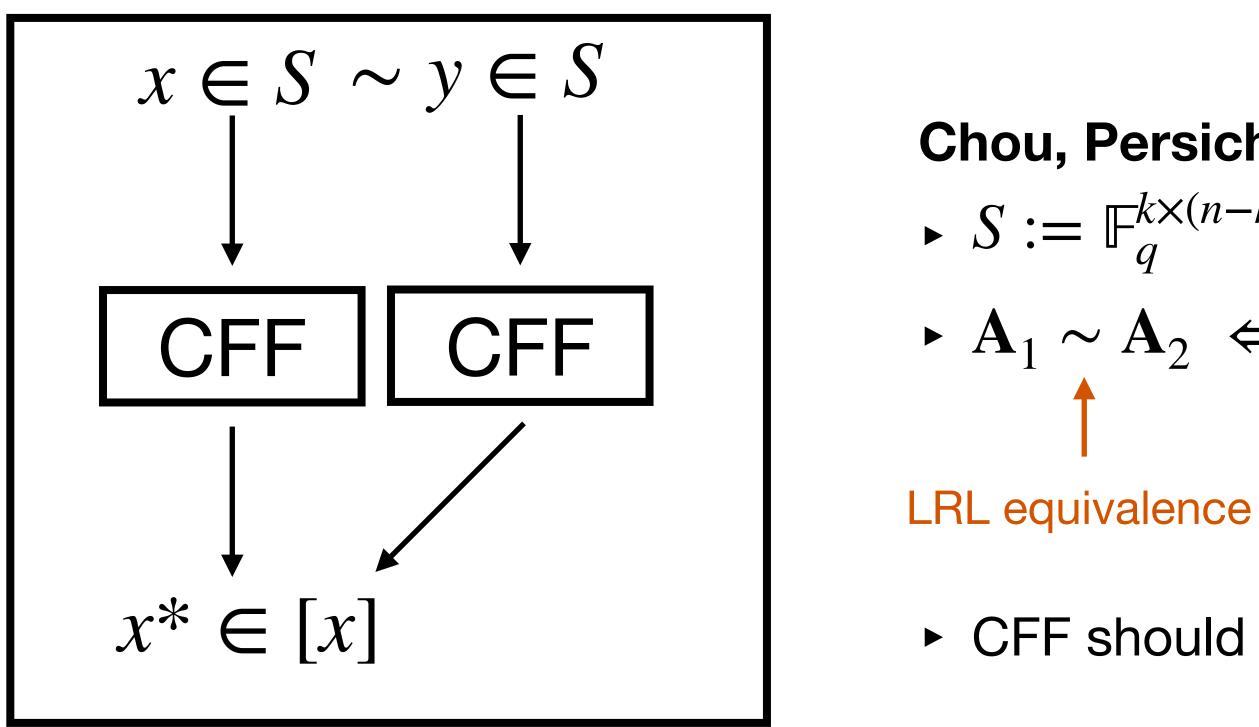


Example:
•
$$S = \mathbb{Z}$$

• $x \sim y \iff x \equiv y \mod 3$
• CFF : $\mathbb{Z} \rightarrow \{0,1,2\}, \quad x \mapsto x \mod 3$

Chou, Persichetti, Santini (CPS), DCC 2025:

- ► *S*: set
- ~: equivalence relation on S
- $\bullet [x] := \{ y \mid x \sim y \}$



Example:
•
$$S = \mathbb{Z}$$

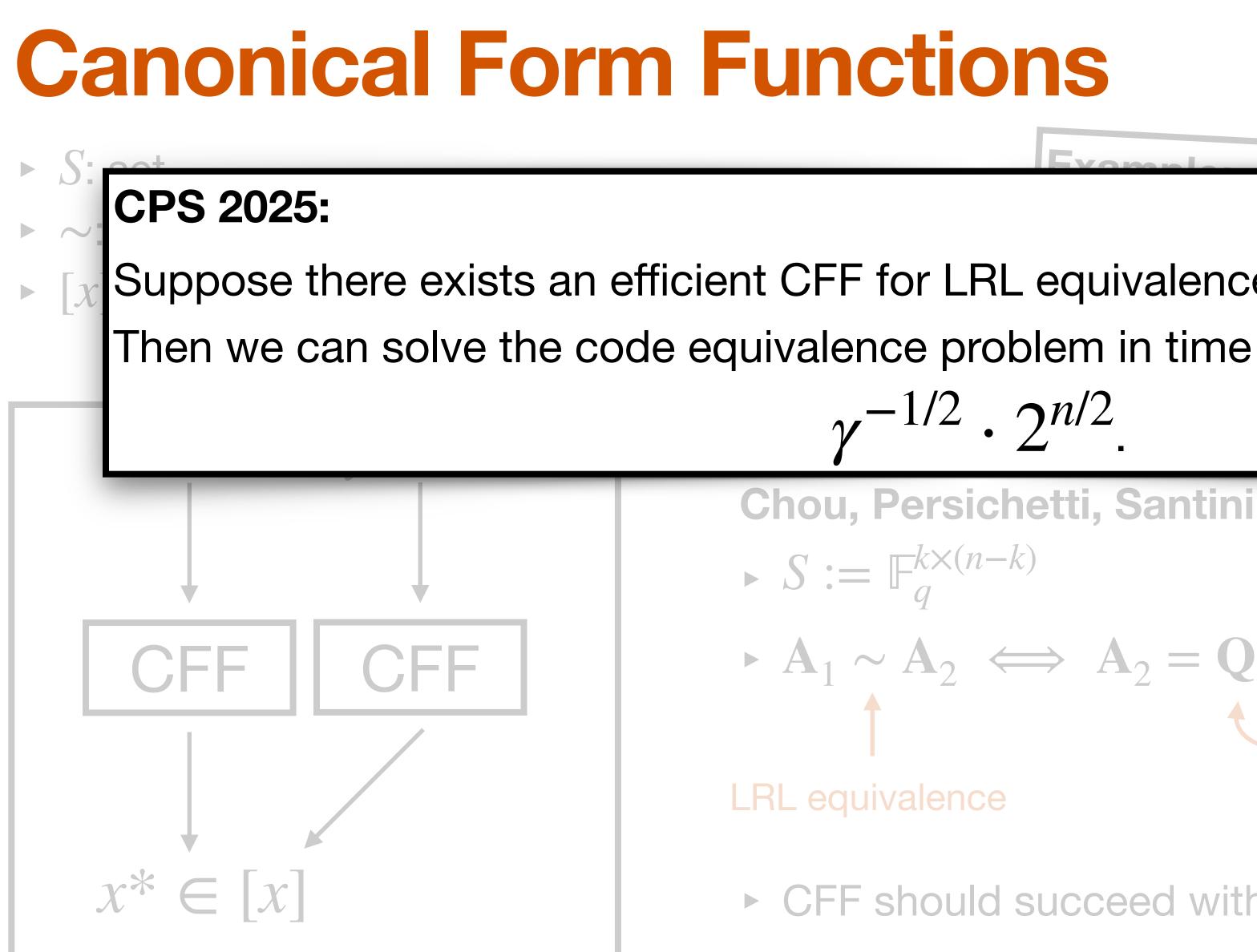
• $x \sim y \iff x \equiv y \mod 3$
• CFF : $\mathbb{Z} \rightarrow \{0,1,2\}, \quad x \mapsto x \mod 3$

Chou, Persichetti, Santini (CPS), DCC 2025:

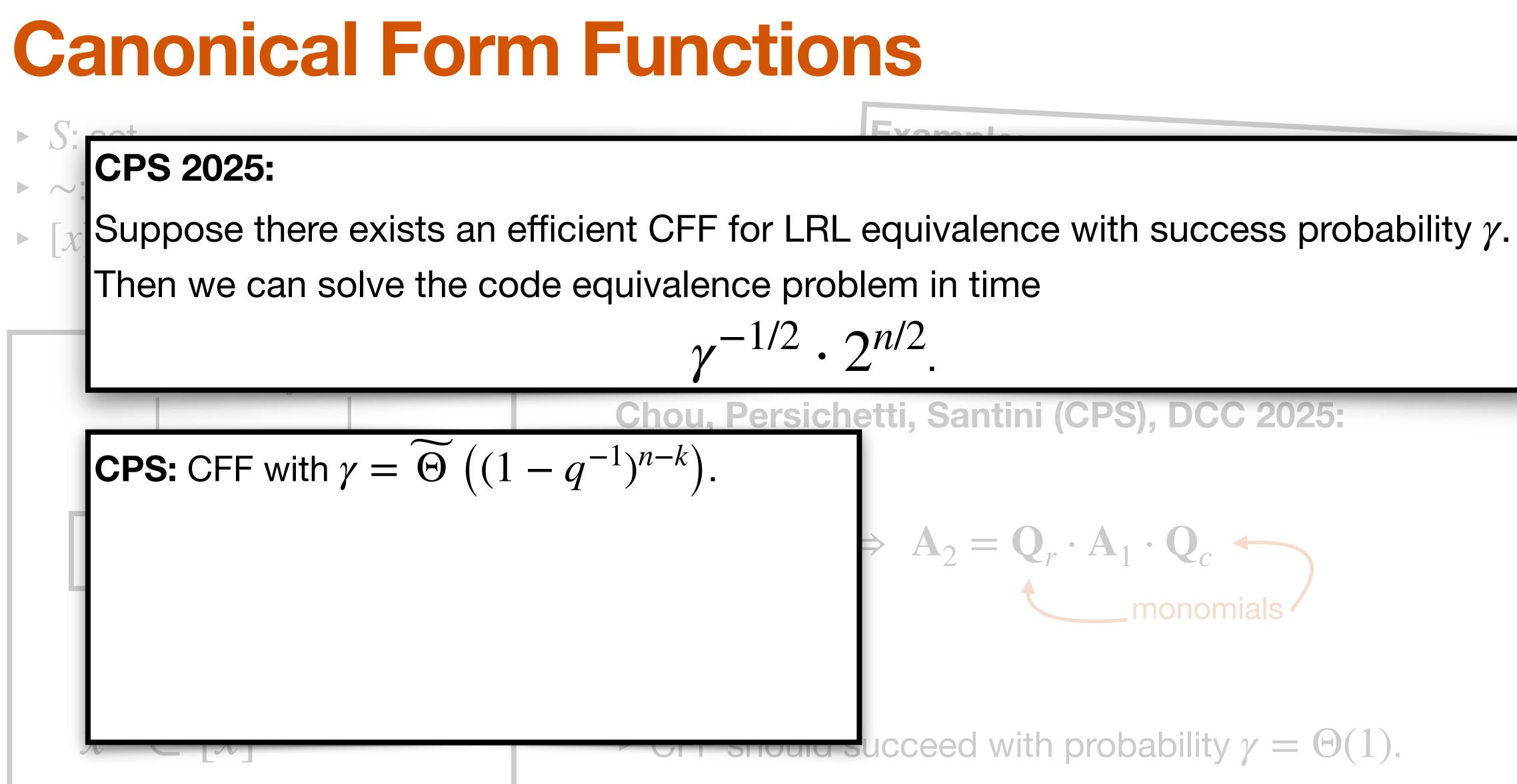
$$= \mathbb{F}_{q}^{k \times (n-k)}$$

$$\sim \mathbf{A}_{2} \iff \mathbf{A}_{2} = \mathbf{Q}_{r} \cdot \mathbf{A}_{1} \cdot \mathbf{Q}_{c}$$
monomials

• CFF should succeed with probability $\gamma = \Theta(1)$.

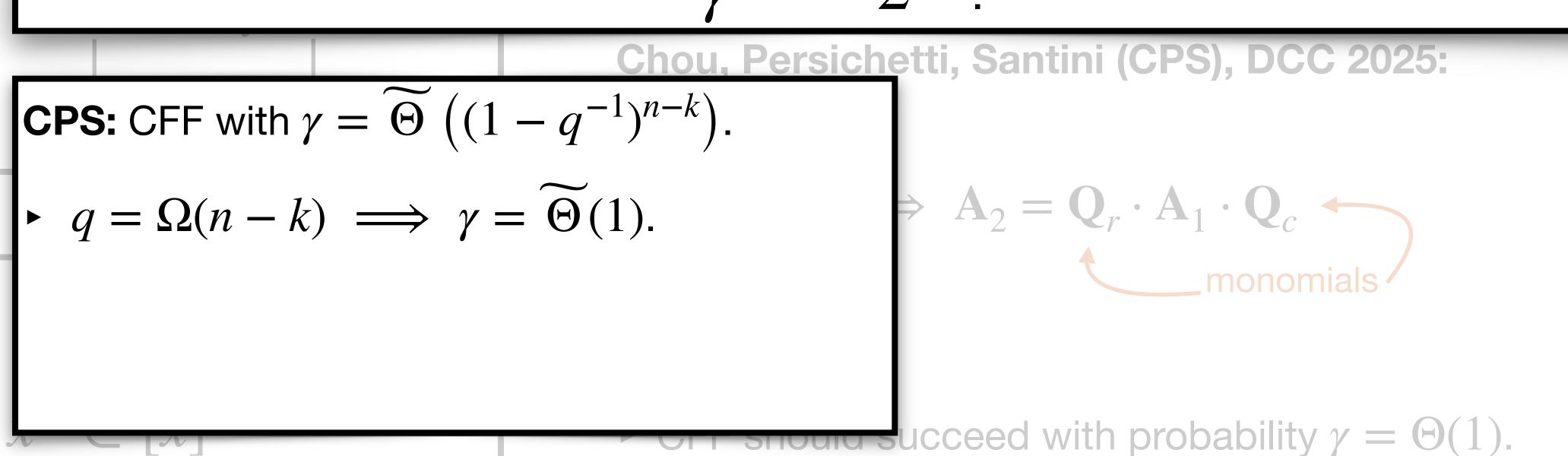


- Suppose there exists an efficient CFF for LRL equivalence with success probability γ .
 - $\gamma^{-1/2} \cdot 2^{n/2}$
 - Chou, Persichetti, Santini (CPS), DCC 2025: $\blacktriangleright S := \mathbb{F}_a^{k \times (n-k)}$
 - $A_1 \sim A_2 \iff A_2 = \mathbf{Q}_r \cdot \mathbf{A}_1 \cdot \mathbf{Q}_c \longleftarrow$
 - CFF should succeed with probability $\gamma = \Theta(1)$.



CPS 2025:

Then we can solve the code equivalence problem in time



- Suppose there exists an efficient CFF for LRL equivalence with success probability γ .
 - $-1/2 \cdot 2^{n/2}$

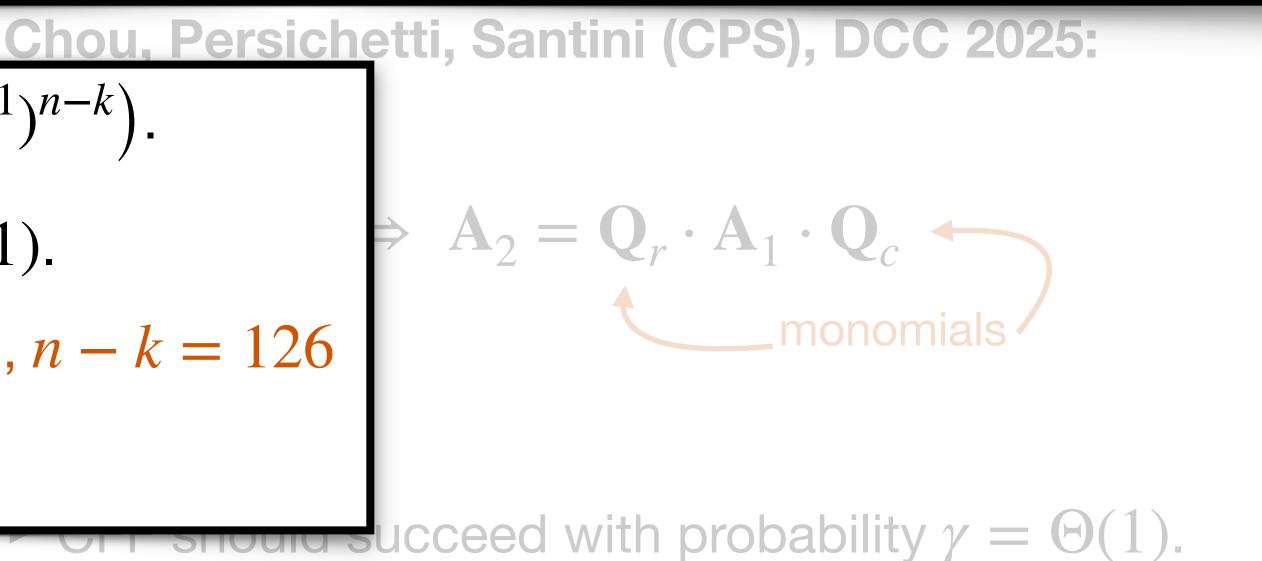
CPS 2025:

Then we can solve the code equivalence problem in time

CPS: CFF with $\gamma = \widetilde{\Theta} ((1 - q^{-1})^{n-k}).$ • $q = \Omega(n-k) \implies \gamma = \widetilde{\Theta}(1).$ rest LESS: q = 127, n - k = 126

Suppose there exists an efficient CFF for LRL equivalence with success probability γ .

$$-1/2 \cdot 2^{n/2}$$



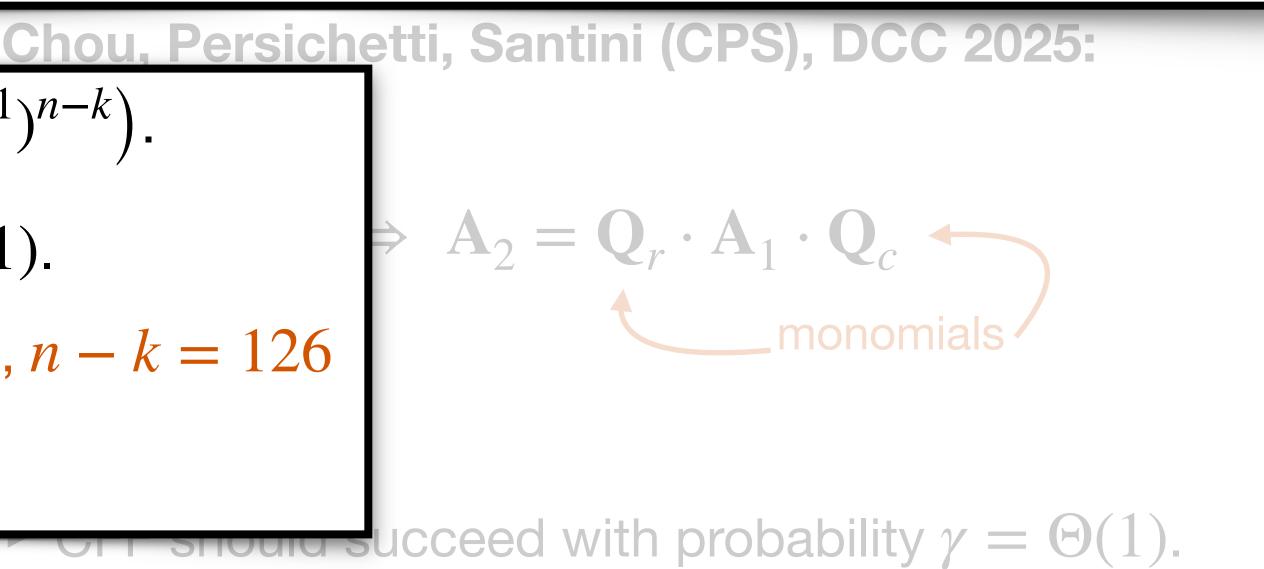
CPS 2025:

Then we can solve the code equivalence problem in time

CPS: CFF with $\gamma = \widetilde{\Theta} \left((1 - q^{-1})^{n-k} \right)$. • $q = \Omega(n-k) \implies \gamma = \widetilde{\Theta}(1)$. rest LESS: q = 127, n - k = 126 $\blacktriangleright q = O(1) \implies \gamma = 2^{-\Theta(n)}.$

Suppose there exists an efficient CFF for LRL equivalence with success probability γ .

$$-1/2 \cdot 2^{n/2}$$



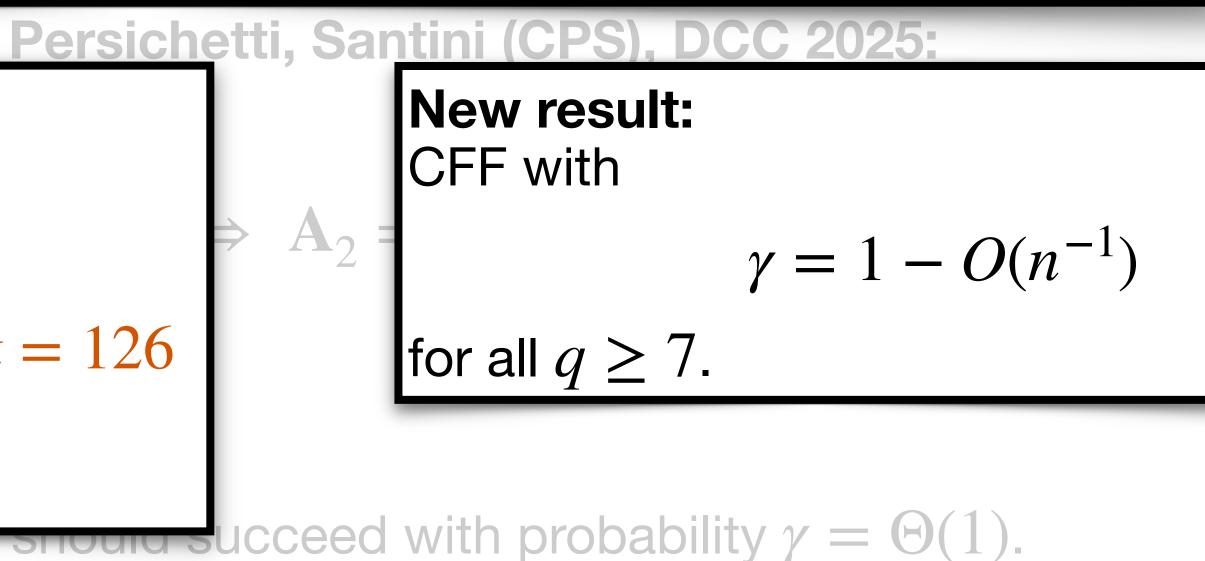
CPS 2025:

Then we can solve the code equivalence problem in time

CPS: CFF with $\gamma = \widetilde{\Theta} ((1 - q^{-1})^{n-k}).$ $\bullet \ q = \Omega(n-k) \implies \gamma = \widetilde{\Theta}(1).$ rightarrow LESS: q = 127, n - k = 126 $\blacktriangleright q = O(1) \implies \gamma = 2^{-\Theta(n)}$

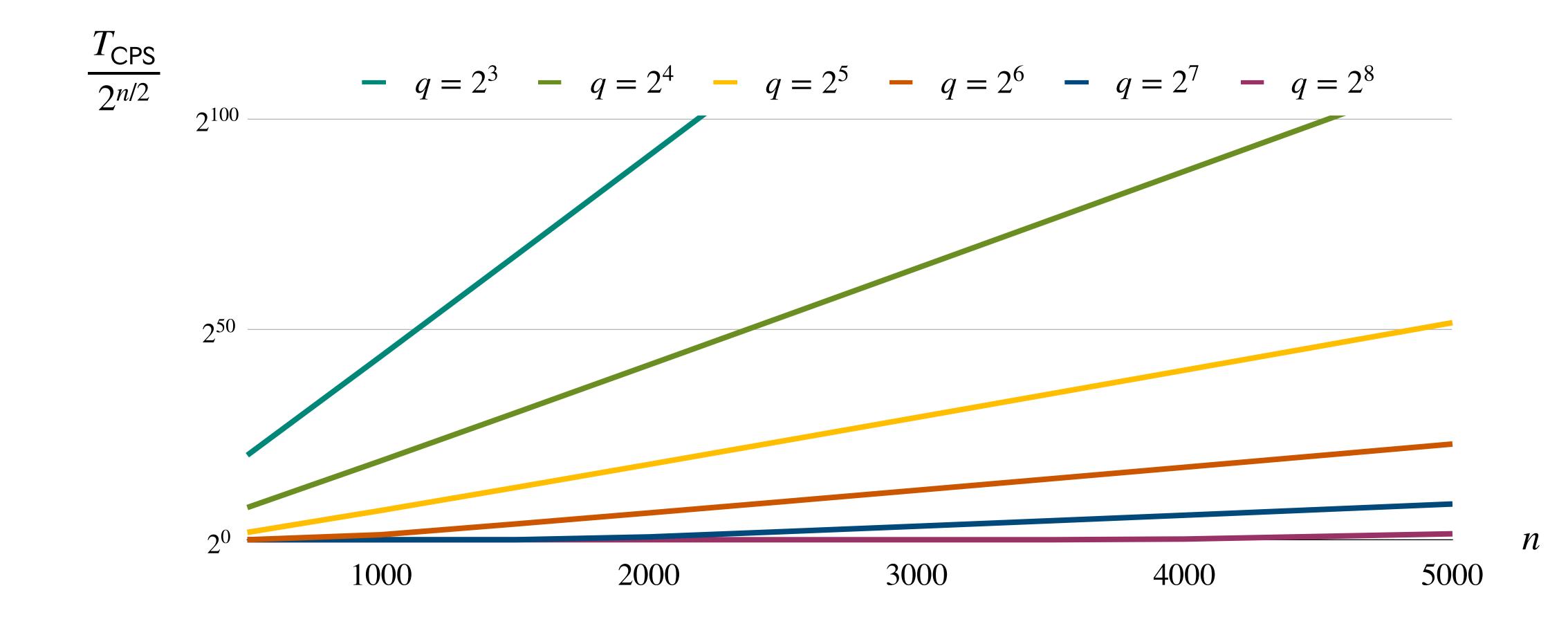
Suppose there exists an efficient CFF for LRL equivalence with success probability γ .

$$-1/2 \cdot 2^{n/2}$$



Comparison with CPS

Runtime using new CFF: $2^{n/2}$



Runtime using CPS' CFF: $2^{n/2} \cdot 2^{\Theta(n)}$

Theorem: New CFF has success probability $\gamma = 1 - O$

$$O(n^{-1})$$
 for all $q \ge 7$.

Theorem:

New CFF has success probability $\gamma = 1 - O$

Proof sketch:

•
$$\mathbf{A} \leftarrow \mathbb{F}_q^{k \times (n-k)}$$

• $P := \Pr[\text{two rows of } \mathbf{A} \text{ are identical up to permutation}]$

$$O(n^{-1})$$
 for all $q \ge 7$.

Theorem:

New CFF has success probability $\gamma = 1 - O$

- $\blacktriangleright \mathbf{A} \leftarrow \mathbb{F}_{q}^{k \times (n-k)}$
- $P := \Pr[\text{two rows of } \mathbf{A} \text{ are identical up to permutation}]$
- For the new CFF, we have $\gamma \approx 1 P$.

$$O(n^{-1})$$
 for all $q \ge 7$.

Theorem:

New CFF has success probability $\gamma = 1 - C$

- $\blacktriangleright \mathbf{A} \leftarrow \mathbb{F}_a^{k \times (n-k)}$
- $P := \Pr[\text{two rows of } \mathbf{A} \text{ are identical up to permutation}]$
- For the new CFF, we have $\gamma \approx 1 P$.
- Richmond, Shallit 2009: (Electronic Journal of Combinatorics) $\mathbf{v}, \mathbf{w} \leftarrow \mathbb{F}_{q}^{n-k}$ are identical up to permutation with probability $\approx (n-k)^{(1-q)/2}$.

$$O(n^{-1})$$
 for all $q \ge 7$.

Theorem:

New CFF has success probability $\gamma = 1 - O$

•
$$\mathbf{A} \leftarrow \mathbb{F}_q^{k \times (n-k)}$$

- $P := \Pr[\text{two rows of } \mathbf{A} \text{ are identical up to permutation}]$
- For the new CFF, we have $\gamma \approx 1 P$.
- Richmond, Shallit 2009: (Electronic Journal of Combinatorics) $\mathbf{v}, \mathbf{w} \leftarrow \mathbb{F}_{a}^{n-k}$ are identical up to permutation with probability $\approx (n-k)^{(1-q)/2}$.

$$\implies P \leq k^2 \cdot (n-k)^{(q-1)/2}$$
Union Bound

$$O(n^{-1})$$
 for all $q \ge 7$.

Theorem:

New CFF has success probability $\gamma = 1 - O$

•
$$\mathbf{A} \leftarrow \mathbb{F}_q^{k \times (n-k)}$$

- $P := \Pr[\text{two rows of } \mathbf{A} \text{ are identical up to permutation}]$
- For the new CFF, we have $\gamma \approx 1 P$.
- Richmond, Shallit 2009: (Electronic Journal of Combinatorics) $\mathbf{v}, \mathbf{w} \leftarrow \mathbb{F}_{a}^{n-k}$ are identical up to permutation with probability $\approx (n-k)^{(1-q)/2}$.

$$O(n^{-1})$$
 for all $q \ge 7$.

Theorem:

New CFF has success probability $\gamma = 1 - O$

•
$$\mathbf{A} \leftarrow \mathbb{F}_q^{k \times (n-k)}$$

- $P := \Pr[\text{two rows of } \mathbf{A} \text{ are identical up to permutation}]$
- For the new CFF, we have $\gamma \approx 1 P$.
- Richmond, Shallit 2009: (Electronic Journal of Combinatorics) $\mathbf{v}, \mathbf{w} \leftarrow \mathbb{F}_{a}^{n-k}$ are identical up to permutation with probability $\approx (n-k)^{(1-q)/2}$.

$$\Rightarrow P \leq k^2 \cdot (n-k)^{(q-1)/2} = \Theta(n^{2+(1-q)/2}) = \Theta(n^{(5-q)/2}) = \begin{cases} \Omega(1), & \text{for } q \leq 5 \\ O(n^{-1}), & \text{for } q \geq 7 \end{cases}$$

Union Bound $k = n/2$

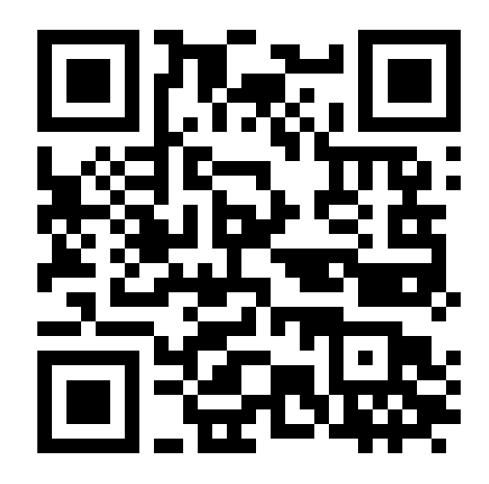
$$O(n^{-1})$$
 for all $q \ge 7$.

Success Probability in Practice

q	50	60	70	80	90	100
2	0 %	0 %	0 %	0 %	0 %	0 %
3	0 %	0 %	0 %	0 %	0 %	0 %
4	52 %	32 %	30 %	20 %	10 %	0 %
≥ 5	100 %	100 %	100 %	100 %	100 %	100 %

• New algorithm for code equivalence with runtime $2^{n/2}$ • Exponential improvement over short-codeword based for all $q \ge 2^7$ • Exponential improvement over CPS for q = O(1)

- LESS parameters not affected



https://ia.cr/2024/1272

• New algorithm for code equivalence with runtime $2^{n/2}$ • Exponential improvement over short-codeword based for all $q \ge 2'$ • Exponential improvement over CPS for q = O(1)

- LESS parameters not affected

Core ingredient is improved canonical form function (CFF)

- Previous CFF required $q = \Omega(n)$
- Improved CFF requires $q \ge 7$



https://ia.cr/2024/1272

Summary

• New algorithm for code equivalence with runtime $2^{n/2}$ • Exponential improvement over short-codeword based for all $q \ge 2'$ • Exponential improvement over CPS for q = O(1)

- LESS parameters not affected

Core ingredient is improved canonical form function (CFF)

- Previous CFF required $q = \Omega(n)$
- Improved CFF requires $q \ge 7$

Potential application

Using improved CFF to construct more efficient code-based cryptosystems with smaller q

https://ia.cr/2024/1272

