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Code Equivalence

Linear [n,k] code: subspace C C [FZ of dimension k.

G@DCz{X-G\XEIF’f]},GE[F’f]X”.

Monomial: linear map Q : F; — [/ that preserves Hamming weight.
& Q € [F’;X”, wi(v - Q) = wt(v) for every v € [

Examples: Fact:
» permutations P Every monomial is of the form Q = P - D.
» diagonal matrices D with non-zero diagonal

O 01 O 2 0 0 O 0O 0 3 0

1 0 O O 01 0 O 2 0 0 0
P: D: —

O 1 0 O 0O 0 3 O Q O 1 0 O

0O 0 0 1 0O 0 0 2 0 0 0 2



Code Equivalence

Codes (C, G, are linearly equivalent.

—
C, = C; - Q, for some monomial Q.
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Given: generator matrices G, G, € [F];X” of equivalent codes C, C, .
Find: monomial Q with C, = C, - Q.

A nOt Gz — Gl : Q, bUt Gz — U : Gl ’ Q, fOI’ some U E GL([I:];)
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Canonical Form Functions

> S: set
» ~: equivalence relation on

> [x] = {y|x~y}

Chou, Persichetti, Santini (CPS), DCC 2025:
, Q= [I:kx(n—k)
' q

> A~ Ay = A =0Q,-A-Q,
T §\ monomials

LRL equivalence

» CFF should succeed with probability y = O(1).
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Canonical Form Functions

CPS 2025:

Suppose there exists an efficient CFF for LRL equivalence with success probabillity y.

Then we can solve the code equivalence problem in time
—1/2 2n/2

/

CPS: CFF withy = © ((1 — g~ 'y"*). New result

s g=Qn-k) = y= 0() y=1-0@n")
@ LESS: g =127, n — k=126 forallg > 7.

» g=0(1) = y=2"9m




Comparison with CPS

Runtime using new CFF: Runtime using CPS’ CFF:
nl2 /2 | HBn)
TCPS 3 4 5 6 7 8
o2 — qg=2 — q=2 g=2 — q=2° — g=2" — g=2
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Proof sketch:
b A — [I:kx(n—k)
q

» P := Pr[two rows of A are identical up to permutation]
» For the new CFF, we havey ~# 1 — P.

» Richmond, Shallit 2009: (Electronic Journal of Combinatorics)
V,W < ﬂ:’;_k are identical up to permutation with probability ~ (n — k){1=9/2.

» = P <k’ (n-k)@ D2 =@un2t1-972) = @(nt-972) = Q(l), forg<5s
_T f O(n™", forg>7
Union Bound k=n/2



Success Probability in Practice

0 % 0 % 0 % 0 % 0 % 0 %

3 0 % 0 % 0 % 0 % 0 % 0 %

4 52 % 32 % 30 % 20 % 10 % 0 %

> 5 100 % 100 % 100 % 100 % 100 % 100 %
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> Previous CFF required g = €2(n)
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> Potential application
> Using improved CFF to construct more efficient code-based https://ia.cr/2024/1272

cryptosystems with smaller g
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